Farbe und Konstitution bei anorganischen Feststoffen, 15. Mitt.¹:

Die Lichtabsorption des zweiwertigen Kobalts in Silikaten vom Olivintypus

Von

O. Schmitz-DuMont und Claus Friebel

Aus dem Anorganisch-Chemischen Institut der Universität Bonn

Mit 8 Abbildungen

(Eingegangen am 3. März 1967)

Mischkristalle $\operatorname{Co}_x \operatorname{Mg}_{1-x} \operatorname{CaSiO}_4(I)$ und $\operatorname{Co}_x \operatorname{Mg}_{2-x} \operatorname{SiO}_4(II)$, in denen sich das Mg^{2+} vollständig durch Co^{2+} ersetzen läßt, wurden röntgenographisch und spektralphotometrisch untersucht, desgleichen Mischkristalle {CoCaSiO}_4 + y Co_2SiO}_4 (III), $\langle y \leq 0, 1 \rangle$. In I befindet sich das Co^{2+} in den triklin verzerrten Oktaederpositionen M_i , in II und III außerdem in den monoklin verzerrten Oktaederlücken M_s des Olivingitters ($M_i M_s \operatorname{SiO}_4$).

Beim Einbau von Co^{2+} in Mg₂SiO₄ werden die kleineren M_iO_6 -Polyeder bevorzugt besetzt und aufgeweitet. Die Absorptionsspektren des Co_s^{2+} von II und III konnten ermittelt werden, indem man die überlagerte Lichtabsorption des Co_i^{2+} durch ein Näherungsverfahren eliminierte. Beim Übergang $\operatorname{Co}_s^{2+}(\operatorname{III}) \rightarrow \operatorname{Co}_s^{2+}(\operatorname{III})$ wird eine beträchtliche IR-Verschiebung beobachtet; sie ist die Folge der Aufweitung der M_sO_6 -Polyeder bei der Substitution von Mg²⁺ (bzw. Co²⁺) durch Ca²⁺.

Folge der starken Verzerrung der Koordinationsoktaeder im Olivingitter, deren Konstitution ausführlich beschrieben wird, ist eine Verbreiterung und Aufspaltung der Absorptionsbanden. Während der Feldstärkenparameter Δ für Co_i^{2+} in den Co-haltigen Olivinphasen mit Δ (Co²⁺) von $\operatorname{Co}_x \operatorname{Mg}_{1-x}$ O vergleichbar ist, resultieren für Co_s^{2+} auffallend niedrige Δ -Werte.

Mixed crystals $\operatorname{Co}_{x}\operatorname{Mg}_{1-x}\operatorname{CaSiO}_{4}$ (I) $\langle 0, 1 \leq x \leq 1, 0 \rangle$, $\operatorname{Co}_{x}\operatorname{Mg}_{2-x}$ SiO₄ (II) $\langle 0, 05 \leq x \leq 2, 0 \rangle$, and $\langle \operatorname{CoCaSiO}_{4} + y \operatorname{Co}_{2}\operatorname{SiO}_{4} \rangle$ (III)

¹ 14. Mitt.: O. Schmitz-DuMont, H. Fendel, M. Hassanein und Helga Weissenfeld, Mh. Chem. 97, 1660 (1966).

 $\langle y \leq 0, 1 \rangle$ were investigated by X-ray diffraction, and the absorption spectra measured in the ligand field region (4000–26000 cm⁻¹). These phases crystallize in the olivine structure $(M_i M_s \text{SiO}_4)$ containing two differently distorted octahedral sites (M_i of triclinic and M_s of monoclinic symmetry).

In I the Co^{2+} are incorporated in the interstices M_i , in II and III in the interstices M_s in addition. In II—for small values of x—the smaller M_iO_6 -polyhedra are occupied preferably by Co^{2+} and also widened. The spectra for Co_s^{2+} of II and III could be obtained by eliminating the superimposed absorption of the Co_i^{2+} using an approximative substraction method. Going from $\operatorname{Co}_s^{2+}(II)$ to $\operatorname{Co}_s^{2+}(III)$ produces a considerable shift of the absorption bands towards IR as a consequence of the expansion of the M_sO_6 -polyhedra caused by the large Ca^{2+} in III.

The considerable distortion of the coordination octahedra in the olivine lattice causes a broadening and splitting of the absorption bands. Whereas the ligand-field parameter Δ of Co²⁺ in the M_i -sites of $M_i M_s \text{SiO}_4$ may be compared to Δ (Co²⁺) of Co_xMg_{1-x}O, remarkably low Δ -values are observed for Co_s²⁺.

1. Einleitung

In unserer 11. und 12. Mitt.^{2, 3} über die Lichtabsorption des zweiwertigen Kobalts in oxidischen Koordinationsgittern berichteten wir über die Systeme $\operatorname{Co}_{x}\operatorname{Mg}_{1-x}O$, $\operatorname{Co}_{x}\operatorname{Mg}_{1-x}\operatorname{Ti}O_{3}$ und $\operatorname{Co}_{x}\operatorname{Cd}_{1-x}\operatorname{Ti}O_{3}$. Auf Grund der Energiegleichungen für die Termlagen des oktaedrisch koordinierten Co²⁺ wurden die Wellenzahlen der möglichen Elektronenübergänge berechnet, nachdem man die Energieparameter Δ und B aus den Lagen der ausgeprägten Maxima der Hauptabsorptionsbanden I und III entnommen hatte [I entspricht dem Übergang ${}_{a}^{4}T_{1g}(F) \rightarrow {}^{4}T_{2g}(F)$, III dem Übergang ${}_{a}^{4}T_{1g}(F) \rightarrow {}_{b}^{4}T_{1g}(P)$]. Beobachtete und berechnete Bandenlagen zeigten eine befriedigende Übereinstimmung. Wird nunmehr das zweiwertige Kobalt in stark verzerrte Oktaederpositionen eingebaut, wie sie in Silikatstrukturen vorliegen, so beobachtet man eine Verbreiterung und Differenzierung der Absorptionsbanden. Diese Beobachtung gibt Anlaß, den Einfluß einer Verzerrung des Koordinationsoktaeders auf die Lichtabsorption von 3 dn-Kationen systematisch zu untersuchen. Im folgenden berichten wir über das Verhalten des Co2+ nach isomorphem Einbau in Monticellit (MgCaSiO₄) und Forsterit (Mg₂SiO₄).

2. Kristallchemische Betrachtungen

a) Das Olivingitter

Die als Wirtsgitter verwendeten Silikate Forsterit (Mg₂SiO₄) und Monticellit (MgCaSiO₄) kristallisieren in der Raumgruppe D_{2h}^{16} mit 4 Formeleinheiten

² 11. Mitt.: D. Reinen, Mh. Chem. 96, 730 (1965).

³ 12. Mitt.: O. Schmitz-DuMont und D. Grimm, Mh. Chem. 96, 922 (1965).

der allgemeinen Zusammensetzung $M_i M_s$ [SiO₄] in der Elementarzelle (M_i in Inversionszentren, M_s auf Spiegelebenen). Die O-Atome bilden angenähert eine hexagonal dichteste Kugelpackung; die pseudohexagonale Achse entspricht der a-Achse einer rhombischen Zelle, welche beim Vorliegen einer idealen Kugelpackung das Achsenverhältnis $a:b:c=1\overline{2}:3:1\overline{3}$ besitzt. Die Besetzung von Tetraederlücken innerhalb des O-Teilgitters durch Si erfolgt in der Weise, daß SiO₄-Inseln entstehen, die ein komplexes Anionengitter bilden. Die Kationen M_i^{2+} befinden sich in triklin verzerrten Oktaederlücken der Symmetrie C_i , die Kationen M_s^{2+} in monoklin verzerrten der Symmetrie C_{s} . Die Eigensymmetrie der MO_{6} -Oktaeder, d. h. die Art ihrer Verzerrung, ist durch die Punktsymmetrie der Olivinstruktur gegeben; das Ausmaß der Verzerrung wird durch das Größenverhältnis zwischen SiO₄- und MO_6 -Polvedern (M = Mg im Falle des Forsterits bzw. = Mg. Ca im Falle des Monticellits) bestimmt: Während die mittlere Kantenlänge des SiO₄-Tetraeders 2,65 Å beträgt, ist der kürzeste O-O-Abstand im MgO 2,98 Å und im CaO 3,40 Å. Gemeinsame Kanten zwischen SiO_4 -Tetraedern und MO_6 -Oktaedern führen notwendig zu einer starken Verzerrung der letzteren. Die nähere Untersuchung dieser Verzerrung erfordert, daß wir den Aufbau des Olivingitters etwas eingehender betrachten.

Die M_iO_6 -Oktaeder sind über gemeinsame Kanten zu Ketten parallel zur c-Achse miteinander verbunden, zwischen denen in Richtung der *a*-Achse die SiO₄-Tetraeder angeordnet sind. Die Verknüpfung der M_sO_6 -Oktaeder erfolgt nur über Ecken (O_{III}-Atome, Abb. 1), so daß Netze parallel zur *ac*-Ebene ent-

Abb. 1. Anordnung der Koordinationspolyeder im Olivingitter ($M_{i}M_{s}$ SiO₄). Das Koordinationsoktaeder von M_{i} ist über 2 Kanten (O_{II} — O_{III}) und 2 Ecken (O_{I}) mit 4 SiO₄-Tetraedern verknüpft, das Koordinationsoktaeder von M_{s} über 1 Kante (O_{III} — O_{III}) und 4 Ecken mit 5 SiO₄-Tetraedern. Man beachte, daß sich das eingezeichnete Si-Atom oberhalb der durch die 3 umgebenden O-Atome (II, III, III) festgelegten Ebene befindet (vgl. die Parameterangaben)

stehen. In Richtung der *b*-Achse alternieren jeweils die aus M_i O₆-Oktaederketten und SiO₄-Tetraedern aufgebauten Schichten mit den M_s O₆-Oktaedernetzen. In Abb. 1 sind die wesentlichen Symmetrieeigenschaften der MO_6 -Oktaeder hervorgehoben, die sich aus diesem Verknüpfungsprinzip der Koordinationspolyeder ergeben: Die M_iO_6 -Oktaeder sind durch zwei Pinakoidflächen ausgezeichnet, die jeweils von einer gemeinsamen M_iO_6 -Oktaederkante, einer M_sO_6 -Oktaederkante und von einer SiO₄-Tetraederkante begrenzt werden; die M_sO_6 -Oktaeder besitzen nur eine ausgezeichnete Fläche, die von zwei gleichartigen M_iO_6 -Oktaederkanten und von einer SiO₄-Tetraederkante gebildet wird. Die gemeinsamen Kanten zwischen MO_6 -Oktaedern und SiO₄-Tetraedern bilden Basisflächen (O₁₁O₁₁₁O₁₁₁) der SiO₄-Tetraeder parallel zur bc-Ebene. Die entsprechende Höhe der SiO₄-Tetraeder bestimmt den Abstand der M_iO_6 -Oktaederketten in Richtung der a-Achse und hat somit einen weitgehenden Einfluß auf die Gitterkonstante a. Die Aufweitung der Oktaederlücken M_s beim Übergang Forsterit \rightarrow Monticellit wirkt sich infolgedessen vorwiegend auf die Gitterkonstanten b und c aus, während a nur geringfügig vergrößert wird (Tab. 1).

Substant	Gitte	Gitterkonstanten (in Å)				
Substanz	a_0	bo	c_{0}			
Co ₄ Co ₈ SiO ₄	4,78	10,30	6,00			
$Co_i(Co_{0,09}Ca_{0,91})_sSiO_4$	$4,82_{5}$	11,05	6,37			
$Co_i Ca_s SiO_4$	4,83	11,12	6,41			
Gitteraufweitung bei						
der Substitution von	1%	7,5%	6,5%			
Co _s durch Ca _s						

Tabelle 1

b) Die Konstitution der Koordinationsoktaeder im Olivingitter

Geht man von einem durch die Gitterdimension festgelegten *idealen* Sauerstoffgitter mit annähernd regulären Tetraeder- und Oktaederlücken aus, so ergibt sich die Verzerrung der MO_6 -Oktaeder durch Verschiebung der O-Atome, bedingt durch eine Kontraktion der Tetraederlücken, die bei der Besetzung derselben mit Si⁴⁺ erfolgt. Diese Verschiebung geschieht in der Weise, daß im Falle des Forsterits das Größenverhältnis $[M_sO_6]: [M_iO_6]$ annähernd gleichbleibt, aber im Falle des Monticellits zunimmt, da die M_sO_6 -Oktaeder mit den relativ großen Ca²⁺ besetzt werden. Die von Hanke und Zemann⁴ bestimmten Atomkoordinaten des Olivins (Mg1,8Fe0,2SiO₄) sowie die von Onken⁵ angegebenen des Monticellits (MgCaSiO₄) stehen mit dieser Feststellung in vollem Einklang (s. Abb. 2). Daher haben wir aus diesen Parametern die Abmessungen der MO_6 -Oktaeder ermittelt, von denen die Abstände M--O (in Å) in Abb. 2 angegeben sind.

Der Verzerrungsgrad ρ der betreffenden Oktaeder kann allgemein durch die mittlere Abweichung der einzelnen *M*—O-Abstände vom mittleren *M*—O-Abstand \overline{MO} , definiert durch den Ausdruck

$$\rho = \pm \left| \sqrt{\frac{1}{6} \sum_{i=1}^{6} \left(\frac{MO_i - \overline{MO}}{\overline{MO}} \right)^2} \cdot 100 \text{ (in \%)} \right|,$$

⁴ K. Hanke und J. Zemann, Naturwissensch. 50, 91 (1963).

⁵ H. Onken, Naturwissensch. 51, 334 (1964).

angegeben werden und durch die kleinste mittlere Winkelabweichung

$$\overline{\delta} = rac{1}{6} \sum_{i=1}^6 \delta_i ~(ext{in Winkelgraden});$$

 δ_i sind dabei die Winkel zwischen den Achsen eines in M errichteten kartesischen Koordinatenkreuzes --- dieses ist so in die Koordinationsoktaeder zu stellen, daß $\overline{\delta}$ ein Minimum wird — und den jeweiligen Verbindungslinien $M \rightarrow O_i$ (Tab. 2).

c) Die kationische Koordination der O²⁻⁻Liganden

Die beiden Oktaederlücken der Symmetrie C_i und C_s unterscheiden sich nicht nur hinsichtlich ihrer Größe, Eigensymmetrie und Verzerrung, sondern auch in der Koordination ihrer Sauerstoffliganden (Abb.3). Alle O-Atome haben als nächste Nachbarn 3 M und 1 Si analog den 2,4-Spinellen; aber nur die $O_{I}[M_{3}Si]$ -Polyeder besitzen Winkel $(3 \operatorname{SiO}M$ -Winkel je 125° und 3 MOM-Winkel je 90°, Abb. 3a), wie sie der idealen Spinellstruktur entsprechen. In den Koordinationspolvedern der anderen O-Atome (Orr und Orr) kommt jeweils nur einmal der Winkel 125° vor, wie aus den Modellen der Abb. 3 hervorgeht, die für die ideale Olivinstruktur - basierend auf einer hexagonal dichtesten Packung der O-Atome -- gelten. Die zwei übrigen SiOM-Winkel betragen dagegen nur 79°. Im Realfall sind die SiO₄-Tetraeder verkleinert, wodurch die spitzen SiOM-Winkel > 90° werden (Tab. 3).

Zu beachten ist, daß den O_{T} und O_{II} jeweils 2 M_i und 1 M_s , den O_{III} jeweils $1 M_i$ und $2 M_s$ koordiniert sind. Wie Abb. 3 außerdem zeigt, treten die kleinen $SiOM_i$ -Winkel doppelt so oft auf wie die kleinen $SiOM_s$ -Winkel, so daß im Mittel

Monatshefte für Chemie, Bd. 98/4

Abb. 2. Die Verzerrung der Koordinationsokta-eder im Forsterit und im Monticellit, Pro-jektionen auf (100) nach neueren Parameteran-gaben ⁴¹⁵: a) Olivin ($M_{i}M_{s}$ SiO₄) mit $M_{i}M_{s} =$ $= \mathrm{Mg}_{1,\mathrm{s}} \operatorname{Fe}_{\theta_{1}\mathrm{s}} \neq = M_{g_{1}} - - = M_{g_{1}} = M_{g_{1}} + M_{g_{1}} - M_{g_{1}} = M_{g_{1}} = M_{g_{1}} + M_{g_{1}} + M_{g_{1}} = M_{g_{1}} + M_{g_{1}$ i der Projektionsebene liegenden Basisflächen der SiO₄. Tetraeder bilden. Der Größenunterschied der M_sO_6 -Oktaeder in a) und b) wird insbesondere durch die unterschiedlichen b-Koor-dinaten der O_{III} -Atome (III*) bewirkt

die SiO M_s -Winkel größer sind als die SiO M_i -Winkel (Tab. 3). Dies hängt mit dem *schichtenförmigen* Aufbau des Olivingitters parallel zur *ac*-Ebene zusammen (vgl. Abschnitt 2 a): Die M_i^{2+} und Si⁴⁺ mit den

Abb. 3. Die Koordination der O-Atome (I, II, III, III) im Olivingitter $(M_{ij}M_{s}SiO_{4}); \bigotimes = M_{i}, O = M_{s}, \bullet = Si.$ Die Winkelangaben gelten für das ideale Gittermodell; (R = 90°)

b-Koordinaten y = 0 bzw. $\frac{1}{2}$ für M_i und $y \approx \pm \frac{1}{12}$ bzw. $\frac{1}{2} \pm \frac{1}{12}$ für Si bilden mit den O²⁻ zusammen leichtgewellte Anionenschichten der Stöchiometrie $[M_s SiO_4]^{2-}$; zwischen diesen sind die M_s^{2+} in Schichten angeordnet, wobei für M_s annähernd $y = \frac{1}{4}$ gilt.

	Eigen-	Größe und Verzerrungsgrad					
Oktaederart	sym- metrie	MO (in Å)	00 (in Å)	δ			
$\overline{M_i O_6 (\text{Olivin})}$ $MgO_6 (Monticellit)$	$\left. \right\} C_{i}$	$2,10 \pm 1,4\% \\ 2,13 \pm 2,0\%$	$\begin{array}{rrrr} 2,96 \pm & 9,2\% \\ 3,00 \pm & 8,9\% \end{array}$	6,5º 6,2º			
$M_s O_6$ (Olivin) CaO ₆ (Monticellit)	$\left. \right\} C_{\mathcal{S}}$	$2,14 \pm 2,4\% \ 2,37 \pm 2,8\%$	$\begin{array}{rrr} {3,01 \pm 7,6\%} \\ {3,32 \pm 10,5\%} \end{array}$	$^{8,2^{0}}_{10,3^{0}}$			

Tabelle 2

Т	a	b	el	11	е	3
---	---	---	----	----	---	---

SiOM-Winkel	idealen Gittermodell	Olivin ⁴	Monticellit ³
$\overline{2 \times \langle \operatorname{SiO}_{\mathbf{I}} M_i}$	125°	122,20	124,90
$2 imes < { m SiO_{II}} M_i$	790	92,6°	91,80
$2 imes \gtrless { m SiO_{III}} M_i$	790	91,10	91,40
$\boxed{\text{Mittelwert} \not \in \text{SiO}M_i}$	94,30	102,00	102,7º
$1 \times \lt \operatorname{SiO}_{\mathrm{I}} M_{\$}$	1250	118,00	115,30
$1 \times \ll \mathrm{SiO_{II}}M_8$	125^{0}	$123,6^{0}$	$118,5^{0}$
$2 imes \gtrless { m SiO}_{ m III}M_8$	125^{0}	$124,1^{0}$	130,50
$2 imes \gtrless { m SiO}_{ m III} M_s$	790	93,40	94,90
$\operatorname{Mittelwert} lpha \operatorname{SiO}M_s$	109,7°	112,80	114,10

kann man zu (

Die unterschiedliche Größe der SiO*M*-Winkel kann man zu der Wechselwirkung zwischen M_i^{2+} bzw. M_s^{2+} und den koordinierten O^{2-} in Beziehung setzen. Es erscheint plausibel, daß mit Zunahme dieses Winkels die Wechselwirkung M^{2+} — O^{2-} infolge der kontrapolarisierenden Wirkung der Si⁴⁺ abnimmt, besonders hinsichtlich der kovalenten Bindungsanteile, was einer Schwächung des Feldes am Ort des M^{2+} gleichkommt. Dieser Effekt wird bei den M_s^{2+} (relativ große SiO M_s -Winkel) mehr ins Gewicht fallen als bei den M_i^{2+} (relativ kleine SiO M_i -Winkel, vgl. Tab. 3). Auch die Tatsache, daß im Olivin die mittleren M—O-Abstände $M_sO > M_iO$ (Tab. 2), läßt darauf schließen, daß die Si⁴⁺ auf die M_s —O-Bindungen stärker kontrapolarisierend wirken als auf die M_i —O-Bindungen.

3. Versuchsergebnisse

a) Die Lichtabsorption des Co²⁺ nach isomorphem Einbau in MgCaSiO₄

Abb. 4 zeigt die Absorptionsspektren Co-haltiger Monticellite $Co_xMg_{1-x}CaSiO_4$ im Vergleich mit der Farbkurve (5) von $Co_{0,1}Mg_{0,9}O$. Im Gegensatz zum System $Co_xMg_{1-x}O^2$ tritt bei den Co-haltigen Monticellitphasen mit zunehmendem Co-Gehalt *keine* IR-Verschiebung der Banden ein. Wir folgern daraus, daß der mittlere Mg—O-Abstand im MgCaSiO₄ (2,13 Å) bereits so groß ist, daß bei der Substitution von Mg²⁺ durch Co^{2+} keine Aufweitung der Koordinationsoktaeder eintritt. Im Einklang mit der Aufweitung der Koordinationsoktaeder beim Übergang $Co_{0,1}Mg_{0,9}O \rightarrow Co_xMg_{1-x}CaSiO_4$ steht die deutliche IR-Verschiebung der ersten beiden Hauptbanden (I und II in Abb. 4, vgl. Tab. 4).

Besonders auffallend ist die starke Aufspaltung der Bande I. Die hierdurch bedingten beiden Teilmaxima im Abstand von 1300 cm⁻¹ sind bei kleinen Co-Konzentrationen deutlich ausgeprägt. Es dürfte sich um eine Symmetrieaufspaltung handeln, die auf die Verzerrung der Co_iO₆-Polyeder zurückzuführen und hier ungewöhnlich groß ist.

Die gegenüber der Bande III des Mischkristalles $Co_{0,1}Mg_{0,9}O$ verbreiterte Bande III der Co-haltigen Monticellitphasen läßt vier Teilmaxima erkennen. Diese weitgehende Differenzierung⁶ ist ebenfalls eine Folge der niedrigen Symmetrie und Verzerrung der Co_iO_6 -Polyeder. Die Hauptabsorptionsbande II ist wie in der Farbkurve von $Co_{0,1}Mg_{0,9}O$ nur als Schulter angedeutet.

Da das Ca²⁺ im MgCaSiO₄ bis zu etwa 10% durch Mg²⁺ ersetzt werden kann, war die Möglichkeit nicht auszuschließen, daß im CoCaSiO₄ auch geringe Mengen Ca²⁺ durch Co²⁺ ersetzt werden können. Eine weitgehende Substitution war wegen des großen Unterschiedes in den Radien der

⁶ Das eine oder andere Teilmaximum kann auch durch spinverbotene Übergänge bedingt sein, die im Falle einer Erniedrigung der Feldsymmetrie mit größerer Wahrscheinlichkeit stattfinden können.

Abb. 4. Die Lichtabsorption des Co^{2+} in der M_i -Position Co-haltiger Monticellitphasen (verglichen mit der Farbkurve von $Co_{0*1}Mg_{0*9}0$)

Ionen Co²⁺ und Ca²⁺ nicht zu erwarten. Zur Klärung der Frage wurde ein Oxidgemisch entsprechend der Zusammensetzung Co_{1,09}Ca_{0,91}SiO₄ gesintert. In Abb. 5 ist die Farbkurve des Reaktionsproduktes der von CoCaSiO₄ gegenübergestellt. Das Absorptionsspektrum des Co-Monticellits

	$\mathrm{Co}_{x}\mathrm{Mg}_{2-x}\mathrm{SiO}_{4}$	Schulter		$I_s: 6500$	$\mathrm{I}_{i}\colon 8\ 250 ightarrow (7\ 400)$	für $x = 0,05 \rightarrow 2,0$	$13\ 300$	(ca. 16 000) für $x = 0.05$	·	17 500	19 100 19 500	20 400	(21500)						
Olivintypus)	Co ₁ ,1Ca _{0,9} SiO ₄	; in Klammern	$(4\ 800)$	6 800	(8 000)		11 000		$(16\ 100)$	17 300	19 200	$(20\ 000)$	(20 800)						
sondere vom C	$\mathrm{Co}_{x}\mathrm{Mg}_{1-x}\mathrm{CaSiO}_{4}$	ndenlagen in cm ⁻¹		6 700] *)	8 000 %		$(15000 \div 15500)$			$(17\ 800)$	$19\ 300$	(19 900)	$(20\ 900)$						
(insb		hteto Bar		\mathbf{I}_{1}	\mathbf{I}_2		II			IIII	ΠI_2	III ₃	1114						
	$\operatorname{Co}_{0,1}\operatorname{Mg}_{0,9}\operatorname{O}$	Beobac	Beobach	Beobac	Beobac	Beobac	Beobac	Beobac		-	8 400	$(13\ 200)$	$(16\ 000 \div 16\ 500)$			$(18\ 500)$	19 500		(20 200)
	Banden- bezeich- nung				H		H				III								
	Termbe- zeichn. in kub. Feld				${}^{4}\mathrm{T}_{\mathrm{2g}}(\mathrm{F})$		$^{4}\mathrm{A}_{2\mathrm{g}}\left(\mathrm{F} ight)$				$_{b}^{4}\mathrm{T}_{\mathrm{1g}}\mathrm{(P)}$		$^2_{ m b}{ m T}_{1 m g}({ m H})$						

Tabelle 4. Beobachtete Bandenlagen bei Co²⁺.haltigen oxidischen Wirtsgittern

H. 4/1967]

1591

*) Für x = 1,0: 6900 .; 7800 cm⁻¹

hat sich durch die zusätzliche Lichtabsorption des in die Ca-Position eingeführten Co^{2+} in folgender Weise verändert (Tab. 4):

1. In dem nach UV aufsteigenden Ast der Bande I tritt bei etwa $4800~{\rm cm^{-1}}$ eine Schulter auf.

Abb. 5. Überlagerung der Lichtabsorption von Co_i^{2+} und Co_s^{2+} im Co-Monticellit und Ermittlung der Lichtabsorption des Co_s^{2+} : 1) log $F(R_{i+s})$, 2) log $F(R_i)$, 3) Differenzfarbkurve: log $F(R_{i+s}/R_i)$, 4) korrigierte Differenzfarbkurve (s. Text)

2. Im Wellenzahlbereich des Minimums zwischen den ersten beiden Banden wird bei 11 000 cm⁻¹ ein flaches Maximum beobachtet.

3. Die beim CoCaSiO₄ als breite Schulter ausgeprägte Bande II wird von einer Bande überlagert, die als Schulter bei 16 000 cm⁻¹ hervortritt und zu einer IR-Verschiebung des ersten Teilmaximums der Bande III führt, das nunmehr freistehend ist. H. 4/1967]

Da die Konstitution (= Eigensymmetrie + Größe + Verzerrungsgrad) der Co_iO₆-Oktaeder im Co_i M_s SiO₄ bei der Substitution von 0,1 Ca²⁺ durch Co²⁺ in der Gitterposition M_s praktisch nicht verändert wird, konnten wir die Lichtabsorption des Co_s²⁺ in Näherung ermitteln, indem wir die Meßwerte der Remission von Co_i(Co_{0,09}Ca_{0,91})_sSiO₄ auf Co_iCa_sSiO₄ als Bezugsstandard bezogen (Kurve 3) und mit Hilfe der im exper. Teil angegebenen Formel (2) korrigierten (Kurve 4). Die erhaltenen Differenzfarbkurven (Abb. 5) zeichnen sich insbesondere durch das starke Hervortreten der im Spektrum von Co_{1,09}Ca_{0,91}SiO₄ (Kurve 1) angedeuteten Bande bei 11 000 cm⁻¹ aus und durch die vollkommen geänderte Struktur der Bande III. Die korrigierte Kurve 4 zeigt im Vergleich zu der nicht korrigierten 3 die Bande I um etwa 500 cm⁻¹ nach UV verschoben und läßt eine Feinstruktur — vielleicht durch eine Termaufspaltung bedingt besser hervortreten.

b) Die Lichtabsorption des Co²⁺ nach isomorphem Einbau in Mg₂SiO₄

Die Farbkurven der Co-haltigen Forsteritphasen $\operatorname{Co}_x \operatorname{Mg}_{2-x} \operatorname{SiO}_4$ (Abb. 6) zeigen eine deutliche Abhängigkeit von der Co-Konzentration x. Das Absorptionsspektrum von $\operatorname{Co}_i \operatorname{Co}_s \operatorname{SiO}_4 (x = 2)$ entspricht der Überlagerung der Lichtabsorption von Co_i^{2+} und Co_s^{2+} im Verhältnis 1:1. Mit abnehmendem Co-Gehalt ändert sich am auffälligsten die Struktur der breiten zweigeteilten I. Hauptbande: Das Intensitätsverhältnis der beiden Teilbanden verschiebt sich deutlich zugunsten der kürzerwelligen Teilbande (I_i); das Maximum dieser Teilbande, die beim $\operatorname{Co}_2 \operatorname{SiO}_4$ zunächst nur als Schulter bei etwa 7400 cm⁻¹ auftritt, wandert von 7600 cm⁻¹ bei x = 1,0 nach 8250 cm⁻¹ bei x = 0.05; das Maximum der längerwelligen Teilbande (I_s) indessen liegt unverändert bei 6500 cm⁻¹.

Da im Olivin der mittlere Abstand M_sO (2,14 Å) größer ist als der mittlere Abstand M_iO (2,10 Å), ist zu erwarten, daß die Lichtabsorption des Co_s^{2+} bei kleineren Wellenzahlen liegt als die des Co_i^{2+} . Daher ordnen wir das Maximum I_s im wesentlichen der Absorptionsbande I des Co_s^{2+} , das Maximum I_i im wesentlichen der Bande I des Co_i^{2+} zu. Auf Grund dieser Zuordnung ergibt sich aus der Verschiebung des Intensitätsverhältnisses der Teilbanden I_s und I_i in Abhängigkeit vom Co-Gehalt, daß das Co^{2+} beim isomorphen Einbau in Forsterit ($Mg_iMg_sSiO_4$) bevorzugt in die kleinere, triklin verzerrte Gitterposition M_i eintritt.

Erfahrungsgemäß und in Übereinstimmung mit dem Termschema² des oktaedrisch koordinierten Co²⁺ liegt die Absorptionsbande II in der Regel bei der 2- bis 2,1fachen Wellenzahl der Bande I. Somit kann die freistehende II. Bande der Forsterit-Farbkurven bei 13 300 cm⁻¹ nur der Lichtabsorption des Co_s²⁺ zugeordnet werden. Dies folgt auch aus der vergleichsweise geringen Intensität dieser Bande bei sehr kleinem Co-Gehalt (x = 0.05). Die Bande II des Co_i²⁺ wäre im Wellenzahlbereich

zwischen 15 000 und 17 000 cm⁻¹ zu erwarten, doch sollte sie nur eine geringe Intensität besitzen, da sich Co_i^{2+} in einem Symmetriezentrum be-

findet. So scheint die betreffende Bande, die in Abb. 6, Kurve 5, als Schulter (II') angedeutet ist, bei höheren Co-Konzentrationen durch den steilen Anstieg der III. Bande verdeckt zu werden.

Bei der stark differenzierten III. Bande lassen sich vier Teilbanden feststellen (Tab. 4), deren Lage von der Co-Konzentration unabhängig ist. Die Maxima der ersten und dritten Teilbande sind am stärksten ausgeprägt. Die dazwischen liegende Bande (III₂) ist durch zwei Teilmaxima charakterisiert. Die letzte Teilbande (III₄), die als Schulter bei 21500 cm⁻¹ in Erscheinung tritt, hebt sich bei Erniedrigung des Co-Gehaltes immer deutlicher hervor, so daß wir diese letzte Teilbande wiederum der Lichtabsorption des Co_i²⁺ zuordnen. Der übrige Teil der III. Bande stellt eine Überlagerung der Bande III von Co_i²⁺ und der von Co_s²⁺ dar.

Da die M_iO_6 -Oktaeder im Forsterit und im Monticellit sich nur in der Größe unterscheiden, jedoch dieselbe Eigensymmetrie und einen vergleichbaren Verzerrungsgrad besitzen (s. Tab. 2), nehmen wir an, daß sich die Farbkurve des Co_i^{2+} im Forsterit von derjenigen des Co-haltigen Monticellits (Abb. 4) in der Struktur nicht wesentlich unterscheidet. Auf Grund dieser Annahme können wir die ausgeprägte Feinstruktur der III. Bande der Co-haltigen Forsteritphasen nur der Lichtabsorption von Co_s^{2+} zuschreiben, die sich auch bei kleinem Co-Gehalt infolge des fehlenden Symmetriezentrums in den Co_sO_6 -Oktaedern durchsetzt, so daß die Struktur der Bande III von Co_i^{2+} verborgen bleibt.

c) Vergleich der Lichtabsorption von Co_i^{2+} und Co_s^{2+} im Forsterit mit der entsprechenden im Monticellit

Nur die I. Bande des Co_i^{2+} in den Forsteritphasen $\operatorname{Co}_x \operatorname{Mg}_{2-x} \operatorname{SiO}_4$ (im wesentlichen die Bande I_i, Abb. 6) läßt sich erkennen. Das Maximum dieser Bande liegt bei kleinen Co-Konzentrationen (x < 0.3) bei einer Wellenzahl $\overline{\nu} > 8000 \text{ cm}^{-1}$, während der Schwerpunkt der entsprechenden Bande I (I₁/I₂, Abb. 4) bei den Co-haltigen Monticellitphasen bei 7500 cm⁻¹ festzustellen ist. Diese IR-Verschiebung steht im Einklang mit der Verringerung des mittleren M_i O-Abstands um 1,5% beim Übergang Monticellit (2,13 Å) \rightarrow Forsterit (2,10 Å). Es fällt ferner auf, daß die Bande I_i bei den Co-haltigen Forsteritphasen nicht die Symmetrieaufspaltung der entsprechenden Bande I des Co-haltigen Monticellits zeigt. Zwei Effekte können dies bedingen: erstens die Überlagerung der Banden von Co_i²⁺ und Co_s²⁺, zweitens ein etwas geringerer Verzerrungsgrad der Co_iO₆-Oktaeder im Forsterit gegenüber dem im Monticellit (Tab. 2).

Bemerkenswert ist schließlich die oben erwähnte IR-Verschiebung der I. Bande des Co_i^{2+} mit steigender Co-Konzentration im Forsterit. Die Änderung der IR-Verschiebung wird mit zunehmendem Co-Gehalt kleiner. Dieser Farbeffekt deutet auf eine Weitung der M_iO_6 -Oktaeder bei der Substitution von Mg²⁺ durch Co²⁺ hin, wie sie beim System Co_xMg_{1-x}O bekannt ist. Wie die Bestimmung der Gitterkonstanten von Co_xMg_{2-x}SiO₄ auf Grund von *Debye*—*Scherrer*-Aufnahmen zeigte, erfolgt beim Übergang von x = 0 nach x = 2 eine Vergrößerung

von
$$a_0$$
 (4,75 \rightarrow 4,78 Å) um 0,6%,
von b_0 (10,20 \rightarrow 10,30 Å) um 1,0% und
von c_0 (5,98 \rightarrow 6,00 Å) um 0,3%,

wobei die Gitterkonstanten a_0 und b_0 bei x < 1 stärker zunehmen als bei x > 1. Diese Gitteraufweitung entspricht einer Vergrößerung des mittleren M_i O-Abstandes von 2,10 auf 2,12₅ Å.

Demgegenüber werden beim Einbau von Co^{2+} in MgCaSiO₄ keine Anzeichen für eine Aufweitung der $M_i\text{O}_6$ -Oktaeder festgestellt. Wir folgern daraus, daß die mittleren Co_iO-Abstände im Co₂SiO₄ und im CoCaSiO₄ annähernd gleich groß sind, im Gegensatz zu den entsprechenden mittleren M_i O-Abständen in den Co-freien Wirtsgittern. Die annähernd gleiche Konstitution der betreffenden Co_iO₆-Oktaeder veranlaßte zu dem Versuch, die Lichtabsorption des Co_s²⁺ im Forsterit zu ermitteln, indem wir die Messung der Remission von Co_iCo_sSiO₄ gegen Co_iCaSiO₄ als Bezugsstandard durchführten und die Meßwerte nach der im experimentellen Teil angegebenen Formel (2) korrigierten. Abb. 7 zeigt, daß die korrigierte Farbkurve des Co_s²⁺ mit der Farbkurve des Co₂SiO₄ nahezu identisch ist⁷.

In Abb. 8 (Kurve 1 und 2) sind die Absorptionsspektren des Co^{2+} in der M_s -Position von $\text{Co}_i\text{Co}_s\text{SiO}_4$ (Forsterit) und $\text{Co}_i(\text{Co}_{0,09}\text{Ca}_{0,91})_s\text{SiO}_4$ (Monticellit) einander gegenübergestellt. Die Struktur der betreffenden Farbkurven ist vergleichbar: Charakteristisch ist die ausgeprägte freistehende Bande II; die Bande I ist jeweils deutlich verbreitert, und bei der differenzierten III. Bande zeichnet sich die langwelligste Teilbande durch ihre hohe Intensität, eine kurzwellige Teilbande durch ein scharfes Maximum aus.

Erwartungsgemäß beobachtet man beim Übergang Forsterit \rightarrow Monticellit eine starke IR-Verschiebung der Lichtabsorption des Co_{s}^{2+} als Folge der Aufweitung der $M_s\text{O}_6$ -Oktaeder bei der Substitution von Mg²⁺ (0,78 Å) durch Ca²⁺ (1,06 Å). Diese Beobachtung steht in Analogie zu der Aufweitung der $M\text{O}_6$ -Oktaeder im Ilmenitgitter ($M\text{TiO}_3$) bei der Substitution von Mg²⁺ (0,78 Å) durch Cd²⁺ (1,03 Å)³: Die Bandenlagen $\overline{\nu}_{I}$ und $\overline{\nu}_{II}$ des Co_s²⁺ im Forsterit bzw. Monticellit stimmen mit denjenigen des Co²⁺ im Co_{0.1}Mg_{0.9}TiO₃ bzw. Co_{0.15}Cd_{0.85}TiO₃ überein (Abb. 8).

⁷ Infolge der geringen Intensität der überlagerten Lichtabsorption des Co_i^{2+} werden kleine Differenzen in der Co_iO_6 -Konstitution der betrachteten Systeme die erhaltene Farbkurve des Co_s^{2+} kaum verändern.

Betrachten wir die mitgeteilten Versuchsergebnisse im Zusammenhang mit der eingangs beschriebenen Konstitution der MO_6 -Oktaeder,

Abb. 7. Überlagerung der Lichtabsorption von Co_i^{2+} und Co_s^{2+} im Co-Forsterit und Ermittlung der Lichtabsorption des Co_s^{2+} : 1) log $F(R_{i+s})$, 2) log $F(R_i)$, 3) Differenzfarbkurve: log $F(R_{i+s}/R_i)$, 4) korrigierte Differenzfarbkurve (s. Text)

so können wir über die Lichtabsorption des Co^{2+} in den Oktaederlücken M_i und M_s des Olivingitters ($M_iM_s\text{SiO}_4$) folgendes aussagen:

1. Wie die Analyse der überlagerten Spektren von Co_i^{2+} und Co_s^{2+} zeigt,

Abb. 8. Farbkurven des hexakoordinierten Co²⁺ in oxidischen Wirtsgittern verschiedener Strukturtypen: Olivinstruktur (1 u. 2), Ilmenitstruktur (3 u. 4), Spinellstruktur (5)

ist die Absorptionsintensität des Co^{2+} in den Oktaederlücken ohne Symmetriezentren (M_s) erheblich größer als diejenige des Co^{2+} in den Lücken (M_i) , die ein Symmetriezentrum besitzen.

2. Hervorzuheben ist die außergewöhnlich starke Aufspaltung der Bande I und die starke Differenzierung der Bande III von Co_i^{2+} im Cohaltigen Monticellit sowie die Verbreiterung der Bande I und die starke Differenzierung der Bande III von Co_s^{2+} sowohl im Co-haltigen Forsterit wie auch in der Monticellitphase $\operatorname{Co}_i(\operatorname{Co}_{0,09}\operatorname{Ca}_{0,91})_s\operatorname{SiO}_4$. Derartige Effekte, die auf die Verzerrung der Koordinationsoktaeder zurückgeführt werden, sind bisher noch nicht beschrieben worden. Sie können durch eine Aufspaltung der ⁴T-Terme des regulär oktaedrischen Co^{2+} infolge der Überlagerung niedriger symmetrischer Komponenten bedingt sein.

Im Falle einer tetragonalen Komponente entsprechend einer Aufweitung des Co_sO_6 -Oktaeders in der O_IO_I -Richtung, wie sie näherungsweise bei den Co-haltigen Monticellitphasen angenommen werden kann (s. Abb. 2 b), führt die Aufspaltung des ${}^{4}T_{2g}(F)$ -Terms in einen tiefer gelegenen ${}^{4}B_{2g}$ - und einen höher gelegenen ${}^{4}E_{g}$ -Term zu einer entsprechenden Aufspaltung der Bande I, die des ${}^{4}T_{1g}(P)$ -Terms in einen tiefer gelegenen ${}^{4}E_{g}$ - und einen höher gelegenen ${}^{4}A_{2g}$ -Term zu einer Aufspaltung der Bande III. Bei rhombischer Feldsymmetrie werden die noch entarteten E-Terme der tetragonalen Symmetrie weiter in zwei einfache Terme aufgespalten. Die Struktur der Bande I der Co-haltigen Monticellitphasen, die ein schmales längerwelliges und ein breiteres kürzerwelliges Teilmaximum erkennen läßt (Abb. 4), könnte einem solchen Termaufspaltungsbild zugeordnet werden. Eine entsprechende Zuordnung der Maxima der Bande III ist indessen schwieriger (siehe Punkt 3).

3. Im Wellenzahlbereich der Bande III ist auch die Interkombinationsbande J (Abb. 4, Kurve 5 und Abb. 8, Kurve 3 und 4) zu erwarten, die im kubischen Feld dem Quartett—Dublett-Übergang ${}_{a}^{4}T_{1g}(F) \rightarrow {}_{b}^{2}T_{1g}(H)$ entspricht². Welche der kürzerwelligen Teilbanden diesem Übergang zuzuordnen ist, kann auf Grund der vorliegenden Versuchsergebnisse nicht eindeutig entschieden werden

4. Wegen der differenzierten Struktur der Bande III kann der Feldstärkenparameter Δ nur aus den Bandenlagen $\bar{\nu}_{I}$ und $\bar{\nu}_{II}$ abgeschätzt werden. Für das Co_i^{2+} in den Co-haltigen Monticellitphasen erhält man $\Delta \approx 8000 \text{ cm}^{-1}$. Dieser Wert ist dem Parameter vergleichbar, der für Co^{2+} im CoO ($\Delta \approx 8400 \text{ cm}^{-1}$) gefunden wurde². Diese Feststellung ist deshalb von gewisser Bedeutung, weil der mittlere Abstand Co-O (2,13 Å) in den Co-haltigen Monticellitphasen praktisch mit demjenigen im CoO übereinstimmt. Δ -Werte für Co_i^{2+} in den Forsteritphasen $\operatorname{Co}_x Mg_{2-x} \operatorname{SiO}_4$ lassen sich aus den Farbkurven (Abb. 6) nicht entnehmen, da außer dem Maximum I_i der Bande I kein weiteres Bandenmaximum von Co_i^{2+} eindeutig fixiert werden kann.

Für Co_s^{2+} in der Forsteritphase $\text{Co}_t\text{Co}_s\text{SiO}_4$ ergibt sich aus den Lagen der Banden I und II $\Delta \approx 7000 \text{ cm}^{-1}$, für Co_s^{2+} in der Monticellitphase

Co_i(Co_{0,09}Ca_{0,91})_sSiO₄ $\Delta \approx 5800 \text{ cm}^{-1}$. Die Erniedrigung des Δ -Wertes um 1200 cm⁻¹ ist durch die Aufweitung der M_sO_6 -Oktaeder beim partiellen Ersatz von Co_s²⁺ durch das größere Ca²⁺ bedingt. Eine entsprechende Abnahme von Δ wurde beim Übergang Co_{0,1}Mg_{0,9}TiO₃ → Co_{0,15}Cd_{0,85}TiO₃ (beides Ilmenitgitter) beobachtet (Abb. 8)³. Der Δ -Wert von Co_s²⁺ in der Forsteritphase ($\Delta \approx 7000 \text{ cm}^{-1}$) erscheint für den hier vorhandenen mittleren Abstand Co—O = 2,15 Å auffallend klein, wenn man bedenkt, daß für CoO (Co—O-Abstand = 2,13 Å) $\Delta \approx 8400 \text{ cm}^{-1}$ gefunden wurde. Analoges gilt für die Ilmenitphase Co_{0,1}Mg_{0,9}TiO₃.

Zwei Gesichtspunkte können für die Erklärung dieses Phänomens herangezogen werden:

a) die kontrapolarisierende Wirkung der hochgeladenen Kationen (Si⁴⁺), die sich als Schwächung des Feldes in den Co_8O_6 -Oktaedern stärker auswirkt als in den $\text{Co}_6\text{-Oktaedern}$, wie bereits im Abschnitt 2 c dargelegt wurde;

b) der schichtenartige Aufbau des Forsteritgitters (aus $[Co_iSiO_4]^{2-}$ und Co_s^{2+} -Schichten), dem zur Folge die Co_s^{2+} von Sauerstoffionen umgeben sind, die nicht nur durch die Co_i^{2+} , sondern besonders stark durch die Si⁴⁺ innerhalb der $[Co_sSiO_4]^{2-}$ -Schichten einseitig beansprucht werden. Diese Betrachtungsweise läßt eine starke Schwächung des Feldes am Ort der Co_s^{2+} plausibel erscheinen. Sie kann auch zur Deutung des extrem niedrigen Δ -Wertes ($\approx 4700 \text{ cm}^{-1}$) des oktaedrisch koordinierten Co^{2+} im $CoAlInO_4$ und $CoAlGaO_4^8$ herangezogen werden. Bei diesen Verbindungen liegt eine ausgesprochene Schichtenstruktur vor, bei der die O²⁻-Schichten, zwischen welchen die Co^{2+} eingelagert sind, durch die höher geladenen Kationen (die außerdem zweimal so stark vertreten sind wie die Co^{2+}) einseitig relativ stark beansprucht werden. Ähnlich liegen die Verhältnisse auch bei den Phasen $Co_xMg_{1-x}TiO_3$ mit Ilmenitstruktur³, ⁹.

5. Die starke Differenzierung der Bande III des Co_s^{2+} im Co_2SiO_4 erinnert an die entsprechende Bande des *Spinelles* [Ge]⁴[Co₂]⁶O₄ (Abb. 8, Kurve 5). Die drei Absorptionsbanden desselben erscheinen aber beträchtlich nach UV verschoben, entsprechend $\Delta \approx 8700 \text{ cm}^{-110}$. Trotz der kontrapolarisierenden Wirkung der Ge⁴⁺ hat hier (im Spinellgitter) Co²⁺ einen für oxidische Hexakoordination "normalen" Δ -Wert. Dies erscheint nach dem oben gesagten verständlich, wenn man bedenkt, daß die *Spinell*struktur im Gegensatz zur Olivinstruktur keinen schichtenartigen Aufbau senkrecht zu einer Vorzugsrichtung besitzt.

Eine weitergehende Deutung der differenzierten Struktur der Absorptionsbanden — d. h. eine Kristallfeldbehandlung quantitativer Art — des

⁸ O. Schmitz-DuMont und H. Kasper, Z. anorg. allgem. Chem. 341, 252, 261 (1965).

⁹ D. Reinen, Theoret. chim. Acta 5, 312, 322 (1966).

¹⁰ D. Reinen, Privatmitteilung.

 Co^{2+} in den Positionen M_i und M_s des Olivingitters ($M_iM_sSiO_4$) ist erst möglich, wenn uns Einkristalle zur Verfügung stehen.

Mit einer systematischen Untersuchung der Lichtabsorption von $3 d^{n}$ -Kationen nach isomorphem Einbau in Olivinstrukturen des allgemeinen Formeltyps $M_{i}M_{s}TX_{4}$ wird die vorliegende Arbeit fortgesetzt.

Experimenteller Teil

Die Darstellung der Substanzen erfolgte durch Sinterung reaktionsfähiger Oxidgemische, die durch Zersetzung der Mischungen von Nitraten und amorpher, durch Hydrolyse von SiCl₄ hergestellter Kieselsäure erhalten und zu Pillen gepreßt wurden.

Durch die spektralphotometrische und röntgenographische Verfolgung der Reaktion zwischen (Co, Mg)O, CaO und SiO₂ konnten wir feststellen, daß die Monticellitbildung zum Teil über die Phasen $Co_xMg_{1-x}O + Ca_2Co_yMg_{1-y}Si_2O_7$ (Åkermanit) verläuft. Eine Verunreinigung von 1 Mol% Åkermanit, in welchem das Co^{2+} tetraedrisch koordiniert ist, reicht aus, um die Farbkurven der Co-haltigen Monticellite deutlich zu verfälschen. Zur Herstellung reiner Cohaltiger Monticellitphasen von rosavioletter Farbe war daher auf eine genaue stöchiometrische Zusammensetzung besonders zu achten. Um die zunächst entstehenden blauvioletten Reaktionsprodukte vollständig umzuwandeln, waren drei bis fünf Sinterungen bei 1100 bis 1200° C über insgesamt wenigstens 150 Stdn. erforderlich, zwischen denen die Proben sorgfältig gemörsert wurden.

Die Forsteritphasen $\operatorname{Co}_x \operatorname{Mg}_{2-x} \operatorname{SiO}_4$ wurden durch zwei bis drei Sinterungen von je 20 bis 40 Stdn. bei 1200° C erhalten. Substanzen mit x < 1, die außerdem nach Sinterung bei 1650° C abgeschreckt worden waren, zeigten durch diese Behandlung keine Veränderung ihrer Farbkurve.

Die Absorptionsspektren wurden nach der Reflexionsmethode mit einem Zeiss-Spektralphotometer (PMQ II mit 100-Punktautomatik) im Wellenzahlbereich zwischen 4000 und 26 500 cm⁻¹ aufgenommen. Sie sind als charakteristische Farbkurven entsprechend der Kubelka—Munkschen Beziehung

$$\log \frac{K}{S} = \log \frac{(1 - R_{\infty})^2}{2R_{\infty}} \equiv \log F(R_{\infty}) \tag{1}$$

wiedergegeben. $R_{\infty} = R/R_0$ ist der gegenüber einem geeigneten "nichtabsorbierenden" Vergleichsstandard remittierte Bruchteil an Strahlung. Als Vergleichssubstanzen dienten einesteils die Co-freien farblosen Wirtsgitter MgCaSiO₄ und Mg₂SiO₄ ($R_w R_0 \approx 1$), zum anderen aber auch CoCaSiO₄ — ein Wirtsgitter mit einer Eigenabsorption ($R_w/R_0 < 1$). Im letzteren Fall entsprechen die Meßwerte $R_{\infty} = R_{w+k}/R_w$ nicht mehr der gesuchten Reflexion R_k des zusätzlich eingebauten farbgebenden Kations, da die Weglänge des diffus reflektierten Lichtes durch ein Kristallpulver mit zwei absorbierenden Komponenten (w + k) kleiner ist als die Weglänge der remittierten Strahlung durch das Vergleichspulver, welches nur die eine der beiden Komponenten (w) enthält. Die Messung der überlagerten Lichtabsorption von Wirtsgitter + Kation gegen die Absorption des Wirtsgitters liefert daher zu kleine Werte.

1602 O. Schmitz-DuMont u. a.: Konstitution bei anorg. Feststoffen

geeigneter Weise korrigieren. Eine solche Korrektur haben wir mit Hilfe der Formel

$$R_{k} = \left(\frac{R}{R_{w}}\right)^{1/\log \frac{R}{k} + \log \frac{R_{w}}{\log R}} \log \frac{R_{w}}{R_{w}}, \quad R \equiv R_{w+k}$$
(2)

durchgeführt, die in einer anderen Veröffentlichung erläutert wird.

Unsere Arbeiten wurden von der Deutschen Forschungsgemeinschaft und dem Herrn Ministerpräsidenten des Landes Nordrhein-Westfalen unterstützt, wofür wir auch an dieser Stelle unseren Dank aussprechen möchten.